

Allama Iqbal Open University AIOU BS Solved Assignment NO 2 Autumn 2025 Code 9424 Quantitative Reasoning

Q.1(a) A grain storage facility is a hemispherical shell with a radius of thirty meters. What is the volume of the building? How much paint is needed to cover the outside of the building completely?

Given Data:

- Shape: Hemisphere
- Radius, $r = 30 \text{ m}$

We need to find:

1. Volume of the hemisphere
2. Surface area of the hemisphere for painting

Step 1: Volume of the Hemisphere

The volume V of a hemisphere is:

$$V = (1/2) \times (4/3) \times \pi \times r^3$$

$$V = (2/3) \times \pi \times r^3$$

Substitute $r = 30 \text{ m}$:

$$V = (2/3) \times \pi \times (30)^3$$

$$V = (2/3) \times \pi \times 27,000$$

$$V = 18,000 \times \pi$$

Using $\pi \approx 3.1416$:

$$V = 18,000 \times 3.1416 \approx 56,548.8 \text{ m}^3$$

Volume of the hemisphere = 56,548.8 m³

Step 2: Surface Area of the Hemisphere

The curved surface area (CSA) of a hemisphere is:

$$A = 2 \times \pi \times r^2$$

Substitute $r = 30 \text{ m}$:

$$A = 2 \times \pi \times (30)^2$$

$$A = 2 \times \pi \times 900$$

$$A = 1,800 \times \pi$$

$$A \approx 1,800 \times 3.1416 \approx 5,654.9 \text{ m}^2$$

Curved surface area (for paint) = 5,654.9 m²

If the base is also to be painted, include the area of the circular base:

$$\text{Total Surface Area} = 2 \times \pi \times r^2 + \pi \times r^2 = 3 \times \pi \times r^2$$

$$\begin{aligned}\text{Total Surface Area} &= 3 \times \pi \times (30)^2 = 3 \times \pi \times 900 = \\ &2,700 \times \pi \approx 8,482.3 \text{ m}^2\end{aligned}$$

Answer:

- Volume of the building: 56,548.8 m³
- Paint needed to cover curved surface only: 5,654.9 m²
- Paint needed if base is also covered: 8,482.3 m²

**Q.1(b) Write the following sentences in the form “If p,
then q.” Identify p and q.**

1. A resident of Karachi is a resident of Pakistan.

- If p: A person is a resident of Karachi
- Then q: The person is a resident of Pakistan

Form: If a person is a resident of Karachi, then they are a resident of Pakistan.

2. Daily exercise is a sufficient condition for being healthy.

- If p: A person does daily exercise
- Then q: The person is healthy

Form: If a person does daily exercise, then they are healthy.

3. Being bald is sufficient for being male.

- If p: A person is bald
- Then q: The person is male

Form: If a person is bald, then they are male.

4. Whenever it rains, I get wet.

- If p: It rains
- Then q: I get wet

Form: If it rains, then I get wet.

5. There is no doubt that she is smart if she is an art expert.

- If p: She is an art expert
- Then q: She is smart

Form: If she is an art expert, then she is smart.

Q.2(a) Individuals who visited an Islamabad hospital on a single day were prescribed the following amounts of antibiotics (A), painkillers (P), and blood pressure medications (BP):

- P only = 22
- BP and A only = 15
- BP only = 8
- P and A only = 24
- A only = 12
- P and BP only = 16
- All three (P, A, BP) = 2
- None = 2

We are asked to:

- i. Sketch the Venn diagram
- ii. Answer specific questions using the Venn diagram

Step 1: Organize Data for Venn Diagram

In a **3-circle Venn diagram** for P, A, and BP:

Category	Value
----------	-------

Only P	22
--------	----

Only A	12
--------	----

Only BP	8
---------	---

P ∩ A	24
-------	----

only	
------	--

P ∩ BP	16
--------	----

only	
------	--

$A \cap BP$ 15

only

$P \cap A$ 2

$\cap BP$

None 2

Important: The "only" values are **exclusive to those groups**, not including the overlap of all three.

Step 2: Draw the Venn Diagram

- Draw three intersecting circles labeled **P, A, BP**.
- Fill **central intersection (all three)** = 2
- Fill **$P \cap A$ only** = 24 → subtract the all three intersection already counted? Already 24 is only P and A, so no need.

- $P \cap BP$ only = 16
- $A \cap BP$ only = 15
- P only = 22
- A only = 12
- BP only = 8

Venn Diagram Summary:

- P only = 22
- A only = 12
- BP only = 8
- $P \cap A$ = 24
- $P \cap BP$ = 16
- $A \cap BP$ = 15
- $P \cap A \cap BP$ = 2

Total patients:

$$\text{Total} = 22 + 12 + 8 + 24 + 16 + 15 + 2 + 2 \text{ (None)} = 101$$

Step 3: Answer the Questions

ii. How many patients took BP medicines or antibiotics?

- Formula: $\mathbf{BP} \cup \mathbf{A} = \mathbf{BP \ only} + \mathbf{A \ only} + \mathbf{BP \cap A \ only}$
 $+ \mathbf{BP \cap P \ only} + \mathbf{A \cap P \ only} + \mathbf{all \ three}$

From the table:

- $\mathbf{BP \ only} = 8$
- $\mathbf{A \ only} = 12$
- $\mathbf{BP \cap A \ only} = 15$
- $\mathbf{BP \cap P \ only} = 16 \rightarrow \text{already includes BP, yes}$
- $\mathbf{P \cap A \ only} = 24 \rightarrow \text{includes A, yes}$
- $\mathbf{All \ three} = 2$

$$\text{BP or A} = 8 + 12 + 15 + 16 + 24 + 2 = 77$$

Answer: 77 patients

iii. How many patients specifically took BP medicine but did not take any pain medicine?

- BP without P = **BP only + BP \cap A only**
- BP only = 8
- BP \cap A only = 15

$$\text{BP without P} = 8 + 15 = 23$$

Answer: 23 patients

iv. What proportion of patients used painkillers at all?

- Patients using P = P only + P \cap A only + P \cap BP only + all three
- P only = 22
- P \cap A only = 24
- P \cap BP only = 16
- All three = 2

Total P users = 22 + 24 + 16 + 2 = 64

Proportion of patients using painkillers:

- Total patients (excluding None?) Total patients = 101 - 2 (None) = 99 patients? Actually "None" is counted separately, so total patients = 101

Proportion = 64 / 101 \approx **0.634** or **63.4%**

v. How many patients used antibiotics and blood pressure medications but not painkillers?

- Formula: $A \cap BP$ only (exclude P)
- From table: $A \cap BP$ only = 15

Answer: 15 patients

vi. How many patients used pain relievers, antibiotics, or blood pressure medication?

- Formula: Total patients - None
- Total patients = 101
- None = 2

Patients using at least one = $101 - 2 = 99$

Summary of Answers

Question Answer

ii. BP or A 77

iii. BP 23

without P

iv. Proportion 0.634 or

using P 63.4%

v. A and BP 15

but not P

vi. Used P, 99

A, or BP

Q.2(b) In triangle ABC, angle A is twice the measure of angle B, and angle C is 40 degrees. Find the measures of all angles.

Step 1: Triangle Angle Sum Property

The sum of angles in a triangle is always 180° :

$$A + B + C = 180^\circ$$

Step 2: Express angles in terms of B

Given:

- $A = 2B$
- $C = 40^\circ$

Substitute into the sum:

$$2B + B + 40 = 180$$

$$3B + 40 = 180$$

$$3B = 180 - 40$$

$$3B = 140$$

$$B = 140 / 3 \approx 46.67^\circ$$

Step 3: Find angle A

$$A = 2B = 2 \times 46.67 \approx 93.33^\circ$$

Step 4: Angle C

$$C = 40^\circ \text{ (given)}$$

Step 5: Verify sum of angles

$$A + B + C = 93.33 + 46.67 + 40 \approx 180^\circ \quad \checkmark$$

Answer:

- Angle A $\approx 93.33^\circ$
- Angle B $\approx 46.67^\circ$
- Angle C = 40°

Q.3 (a) Solve the inequality $u^2 \leq 3u + 4$

Step 1: Bring all terms to one side:

$$u^2 - 3u - 4 \leq 0$$

Step 2: Factorize the quadratic:

$$(u - 4)(u + 1) \leq 0$$

Step 3: Determine critical points and test intervals:

- Critical points: $u = -1$ and $u = 4$
- Intervals: $(-\infty, -1)$, $(-1, 4)$, $(4, \infty)$

Step 4: Test the sign in each interval:

- For $u < -1$ (e.g., $u = -2$): $(-2 - 4)(-2 + 1) = (-6)(-1) = 6 \rightarrow$ Not satisfying
- For $-1 \leq u \leq 4$ (e.g., $u = 0$): $(0 - 4)(0 + 1) = (-4)(1) = -4 \rightarrow$ Satisfying

- For $u > 4$ (e.g., $u = 5$): $(5 - 4)(5 + 1) = (1)(6) = 6 \rightarrow$

Not satisfying

Step 5: Include boundary points because inequality is ≤ 0 .

Solution:

$$-1 \leq u \leq 4$$

Q.3 (b) Air duct volume and paint area

Given:

- Length of duct = 40 feet
- Radius = 18 inches = 1.5 feet

Step 1: Volume of the cylinder

$$\text{Volume } V = \pi \times r^2 \times h$$

$$= 3.1416 \times (1.5)^2 \times 40$$

$$= 3.1416 \times 2.25 \times 40$$

$$= 3.1416 \times 90$$

$$\approx 282.74 \text{ cubic feet}$$

Volume of duct $\approx 283 \text{ ft}^3$

Step 2: Surface area for painting (curved surface)

$$\text{Surface area } A = 2 \times \pi \times r \times h$$

$$= 2 \times 3.1416 \times 1.5 \times 40$$

$$= 2 \times 3.1416 \times 60$$

$$= 376.99 \text{ ft}^2$$

Optional: Include ends

$$\text{Area of both circular ends} = 2 \times \pi \times r^2 = 2 \times 3.1416 \times$$

$$(1.5)^2 = 2 \times 3.1416 \times 2.25 \approx 14.14 \text{ ft}^2$$

Total paint area $\approx 377 \text{ ft}^2$

Summary Table

Part	Result
	t
(a) Inequality	$-1 \leq u$
solution	≤ 4
(b) Volume of	283
duct	ft^3
(b) Paint	377
area	ft^2

Q.4 (a) Construct the truth table for the logical expression $(p \vee q) \vee (p \wedge r)$

Step 1: Identify variables

The expression has three variables: **p, q, r**. Each can be **True (T)** or **False (F)**.

Step 2: List all possible combinations and compute intermediate results

p q r p p $(p \vee q) \vee$

\vee \wedge $(p \wedge r)$

q r

T T T T T T

T T F T F T

T F T T T T

T F F T F T

F T T T F T

F T F T F T

F F T F F F

F F F F F F

Step 3: Determine when the expression is true

- The expression is **true** in all cases **except when p = F and q = F.**
- **Conclusion:** The expression is true whenever **p = T or q = T.**

Q.4 (b) Convert the storage temperature from Fahrenheit to Celsius

Given:

- Temperature range: **36°F to 46°F**
- Conversion formula (Word-friendly):

$$C = (5 \div 9) \times (F - 32)$$

Step 1: Convert 36°F to Celsius

$$C = (5 \div 9) \times (36 - 32)$$

$$C = (5 \div 9) \times 4$$

$$C \approx 2.22^\circ\text{C}$$

Step 2: Convert 46°F to Celsius

$$C = (5 \div 9) \times (46 - 32)$$

$$C = (5 \div 9) \times 14$$

$$C \approx 7.78^\circ\text{C}$$

 Equivalent Celsius range:

2.2°C to 7.8°C

Answer Summary

Part	Result
(a) Truth table	See table above; expression true except when $p = F$ and $q = F$
(b) Celsius range	2.2°C to 7.8°C

Q.5 Logical Statements

Statement 1:

English: (If p then not p) or (If p then q)

Symbolic Notation:

Insert → Equation Editor:

$$(p \Rightarrow \neg p) \vee (p \Rightarrow q)$$

Truth Table (Word Table):

$$p \ q \ \neg \ p \Rightarrow \ p \quad (p \Rightarrow \neg p) \vee$$

$$p \ \neg p \Rightarrow (p \Rightarrow q)$$

$$q$$

$$T \ T \ F \ F \quad T \quad T$$

$$T \ F \ F \ F \quad F \quad F$$

$$F \ T \ T \ T \quad T \quad T$$

F F T T T T

Type: Contingency

Statement 2:

English: If (p and not p) then r

Symbolic Notation:

$$((p \wedge \neg p) \Rightarrow r)$$

Truth Table:

p \neg p \wedge r $(p \wedge$
p $\neg p$ $\neg p) \Rightarrow r$

T F F T T

T F F F T

F T F T T

F T F F T

Type: Tautology

Statement 3:

English: If p then (p or q)

Symbolic Notation:

$p \Rightarrow (p \vee q)$

Truth Table:

p q p $p \Rightarrow (p$

$\vee (p \vee q)$

q

T T T T

T F T T

F T T T

F F F T

Type: Tautology

Statement 4:

English: Not q and (If (If p then q) then Not p)

Symbolic Notation:

$\neg q \wedge ((p \Rightarrow q) \Rightarrow \neg p)$

Truth Table:

$p \ q \ \neg \ \neg \ p \quad (p \Rightarrow q) \quad \neg q \wedge ((p \Rightarrow$
 $p \ q \Rightarrow \Rightarrow \neg p \quad q) \Rightarrow \neg p)$
 q

T T F F T F F

T F F T F F F

F T T F T T F

F F T T T T T

Type: Contingency

Statement 5:

English: If p then (If q then p)

Symbolic Notation:

$p \Rightarrow (q \Rightarrow p)$

Truth Table:

$p \ q \ q \ p \Rightarrow (q$

$\Rightarrow \Rightarrow p)$

p

T T T T

T F T T

F T F T

F F T T

Type: Tautology

Statement 6:

English: q and not q

Symbolic Notation:

q \wedge $\neg q$

Truth Table:

q \neg q \wedge

q $\neg q$

T F F

F T F

Type: Absurdity

Answer Summary Table

State	Symbolic	Type
ment	Form	

1 $(p \Rightarrow \neg p) \vee$ Conting

$(p \Rightarrow q)$ ency

2 $(p \wedge \neg p) \Rightarrow$ Tautolo

 r gy

3 $p \Rightarrow (p \vee q)$ Tautolo

 gy

4 $\neg q \wedge ((p \Rightarrow \text{Conting}$

$q) \Rightarrow \neg p)$ ency

5 $p \Rightarrow (q \Rightarrow p)$ Tautolo

 gy

6 $q \wedge \neg q$ Absurdi

 ty